Ceramic gas discharge tube

Date:2023-07-04

Ceramic gas discharge tube

   Ceramic gas discharge tube is the most widely used switching device in lightning protection equipment. Gas discharge tube (GDT) uses metallized ceramic tubes and two or more electrodes to seal one or more discharge gaps. Inert gas is filled inside the ceramic gas discharge tube, and active electron powder is coated on the effective electron emission surface of the electrodes. The distance between electrodes less than 1mm can ensure the stability of the breakdown voltage of the discharge tube. The ceramic gas discharge tube is cylindrical in shape and has two structural forms with and without leads. Ceramic gas discharge tubes are used in communication or signal circuits with AC not exceeding 1200V and DC not exceeding 1500V, especially in the protection of information and signal systems. The tube is filled with an inert gas with stable electrical properties, such as argon and neon.

   The following figure shows the circuit symbols of the gas discharge tube under different conditions.

   When the voltage across the gas discharge tube reaches its DC discharge voltage, the internal gas breaks down and discharges. The volt-ampere characteristic of the gas discharge tube is nonlinear, and the breakdown process is divided into three stages: the DC resistance remains above 10°Ω before breakdown; the impedance and tube voltage drop drop sharply at the moment of breakdown, and the conduction current is severe Rise; Impedance and tube voltage drop remain at a very low level immediately after the breakdown, and continue until the voltage on the line is lower than the arc voltage of the gas discharge tube, and then return to the open circuit state by itself.

 

gas discharge tube circuit symbol

Table of contents

Latest News

Positioned among the best, TRS5 Type 1+2 SPD goes head-to-head with leading products from CITEL and DEHN—see how each performs across key application areas.
2025-04-29
Discover the key differences between 3-pole and 4-pole surge protection devices and how various earthing systems influence proper selection and application.
2025-04-02
Explore how solar SPDs and circuit breakers work together to protect PV systems from surges and faults—and how they differ in purpose and function.
2025-03-21
This technical guide to SPD maintenance covers everything from lifespan and inspection frequency to performance testing and replacement criteria—ideal for engineers and facility managers.
2025-07-21
Single-phase power requires careful surge protection; here’s everything you need to know to protect your system effectively.
2025-07-01
Lightning protection zones (LPZs) are areas that within a building or structure facing varied risk levels of lightning strike and transient overvoltages.
2025-06-23
Comprehensive guide to 3-phase surge protection: its function, critical role in electrical systems, and selecting appropriate SPDs for optimal system safety.
2025-06-16
Install Type 1, 2 & 3 SPDs with proper spacing for cascaded protection. Follow IEC 61643-11 standards to protect industrial systems from surge damage.
2025-06-02
Properly sizing a SPD is a critical first step in building a reliable electrical protection system. Both oversizing and undersizing can compromise performance, safety, and cost-efficiency.
2025-05-19
What do surge protective devices (SPDs) and fire extinguishers have in common? Discover how this comparison highlights the value of safeguarding electrical systems before disaster strikes.
2025-04-10
Not sure how SPD, MCB, and RCD differ? This comprehensive guide breaks down their functions and roles in electrical protection systems.
2023-09-26
Product Center
We Are Here For You
  • Whether you are a electrical power engineer, data technique manager or industrial equipment purchasing manager, please submit your requirements to receive exclusive recommendations for our THOR surge protection devices.
    captcha
Ceramic gas discharge tube | Surge protection device SPD - THOR Electric